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Abstract. The use of simulation has become a popular way to develop knowledge
and skills in aviation, medicine, and several other domains. Given the promise of
human-robot teaming in many of these same contexts, the amount of research in
human-autonomy teaming has increased over the last decade. The United States
Air Force Academy (USAFA), for example, has developed several testbeds to
explore human-autonomy teaming in and out of the laboratory. Fidelity require-
ments have been carefully established in order to assess important factors in line
with the goals of the research. This paper describes how appropriate fidelity is
established across a range of human-autonomy research objectives. We provide
descriptions of testbeds ranging from robots in the laboratory to higher-fidelity
flight simulations and real-world driving. We conclude with a description and
guideline for selecting appropriate levels of fidelity given a research objective in
human-machine teaming research.
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1 Introduction

Machines already play an integral role in defense. Across military services, operators
team with machines to perform important tasks such as diffusing explosive ordinance or
safely flying an aircraft. As automated technologies have advanced, so has the military’s
reliance on them. For example, remotely piloted aircraft (RPAs) extend the reach of
humans and have kept numerous pilots out of harm’s way. Newer automated systems are
being fielded at higher levels of automation [1]. Instead of relying on pilots to shift to
autopilot, the Auto Ground Collision Avoidance System (Auto-GCAS) on many fighter
aircraft take control of the aircraft based on its own calculations. If the system detects
the distance to ground and trajectory of the aircraft are unsafe, it will take control of the
aircraft from the pilot and fly to safer airspace. Auto-GCAS has already been credited
with saving seven lives and is a good example of how automation can team effectively
with humans [2].
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Autonomous systems have also been utilized in defense since World War II [3].
Autonomous systems differ from automated systems because autonomous systems can
independently determine courses of action based on their knowledge of itself and the
environment [4, 5] whereas automated systems are more restricted to execution of a set
of scripted pre-determined sets of actions. Autonomous systems are expected to use this
knowledge to achieve goals in situations that are not pre-programmed. Simply because
they can operate independently in these unanticipated environments does not mean they
will operate independent of humans. Indeed, most concepts of operations for military
autonomous systems have these systems teamed with humans across warfighting and
peacetime contexts. AI-based systems are already used in drone swarms to learn pat-
terns based on their observation. Other forecasted applications of AI that are currently
in development include search and rescue techniques and exoskeleton suits [6]. AI tech-
nologieswill continue to penetrate battlefields to help human operators perceive complex
battlespaces, fight effectively, and stay safer across military domains. One challenge to
this end is to enable human-autonomy interactions that are effective and natural across a
wide range ofmilitary tasks. Studies to improve trust, shared situational awareness, social
norms, and collaboration in human-autonomy systems are actively being conducted to
facilitate these interactions [7]. The United States Air Force (USAF), in particular, has
provided a vision for humans teaming with autonomy [8]:

In this vision of the future, autonomous systems will be designed to serve as a
part of a collaborative team with airmen. Flexible autonomy will allow the control of
tasks, functions, sub-systems, and even entire vehicles to pass back and forth over time
between the airman and the autonomous system, as needed to succeed under changing
circumstances. Many functions will be supported at varying levels of autonomy, from
fullymanual, to recommendations for decision aiding, to human-on-the-loop supervisory
control of an autonomous system, to one that operates fully autonomously with no human
intervention at all. The airman will be able to make informed choices about where
and when to invoke autonomy based on considerations of trust, the ability to verify its
operations, the level of risk and risk mitigation available for a particular operation,
the operational need for the autonomy, and the degree to which the system supports the
needed partnership with the airman. In certain limited cases the system may allow the
autonomy to take over automatically from the airman, when timelines are very short for
example, or when loss of lives are imminent. However, human decision making for the
exercise of force with weapon systems is a fundamental requirement, in keeping with
Department of Defense directives.

This paper describes the approach being used to help develop these capabilities
within the Warfighter Effectiveness Research Center (WERC) at the United States Air
Force Academy (USAFA). Realistic simulations have been developed to explore trust,
workload, human-robot interaction (HRI), social norms, and performance across a wide
range of military tasks. Importantly, the fidelity requirements of the intelligent agents,
tasks, and environments have been carefully designed according to research goals and
applications to future battlefields.
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2 Fidelity in Human-Machine Teaming Research

Cadets studying at USAFA are involved in this research as part of the research team
and as participants for experiments. As part of the research team, select firstie (i.e.,
senior) cadets majoring in human factors (HF) engineering and behavioral sciences
learn important concepts in HF (e.g., trust, workload, and situation awareness [9, 10])
byhelping to design experiments inHMT.Another learninggoal is to afford opportunities
for these cadets to critically think about how intelligent systems might be involved in
future warfighting. Cadets learn quickly that the effective integration of these systems
is important for military tasks with life-or-death consequences. Thus, in determining
fidelity requirements for HMT studies, we oftentimes aim for higher degrees of realism.

To achieve this goal, different levels of fidelity have been used in research environ-
ments to represent a variety of Air Force tasks. Fidelity has been defined as the degree to
which a simulation replicates reality [11]. When a simulation more closely mimics the
real world, it is higher fidelity. Simulations lower in fidelity are more artificial without as
manymatching elements in the real world. In medical and aviation training, high-fidelity
simulations have included full-body manikins programmed to provide realistic physi-
ological responses to care and 360°, full-motion flight simulators to prepare pilots for
live flight. Low-fidelity trainers in the same domains include patient vignettes read from
a sheet of paper to test medical students and chair flying [12, 13]. Fidelity in these con-
texts have generally referred to elements of the simulation environment (e.g., graphics,
haptics, etc.) and labeled physical fidelity [14].

Fidelity has also been characterized beyond simply the physical features of the
environment. To create immersive experiences in gaming environments and realistic
behaviors in psychological experiments, fidelity has been considered based on human
elements. Conceptual fidelity measures the degree to which the narrative/scenario ele-
ments in a simulation are connected and make sense to humans in the loop. Similarly,
psychological/emotional fidelity is the extent to which the task mimics the real-world
task to provide a sense of realism [12]. Cognitive fidelity has also been used to mea-
sure the level of human engagement with simulations [15]. Fidelity has thus been more
broadly defined to capture the extent to which the environments and other elements of
the simulation come together to elicit the intended emotional, cognitive, and behavioral
responses from humans. Even simulations low in physical fidelity can create visceral
human reactions and realistic responses to stimuli (e.g., crying in response to reading
sad vignettes on a piece of paper [16]). Games can provide humans a very immersive
experience when the narrative, gameplay, and graphics are combined in consistent ways
and not based on synchronization or the level of physical fidelity [17–24].

Experiments in HMT, like most psychology experiments, are (among other things)
designed to examine specific questions of interest by measuring effects through parti-
tioning the sources of variability. Studies using artefacts that are low in physical fidelity
have been able to examine antecedents and consequences of mind perception toward
robots. Tanibe and colleagues read vignettes of robots sustaining damage in a kitchen to
participants before obtaining perceptions of mind via questionnaires [27]. High-fidelity
simulations have also been used in HMT research. In an elegantly designed study of
mistrust, Alan Wagner had participants work in a building where a simulated fire with
smoke started. Participants were then instructed to follow a robot out of the building.
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Even though the robot navigated incorrectly to a room with no exit (by design), par-
ticipants still frequently followed the robot. Participants seemed to experience real risk
and relied on the robot despite it making an obvious error. Studies across the fidelity
spectrum have attempted to maximize internal, external, and/or ecological validity to
test research hypotheses and improve the precision of the results.

In HMT studies at USAFA, we have set up controlled, yet realistic, environments to
maximize internal, external, and ecological validity. Cadets, many of whomwill be users
of highly automated and autonomous systems, are the participants in these studies. The
simulations used in our experimental settings were developed to maximize the human-
centered types of fidelity at low cost. We have used well established methods such as
Wizard of Oz (WoZ) for both high-fidelity and low-fidelity simulations to try and mimic
future functions of machine agents [28, 29]. Additionally, we have developed novel
tasks in higher-fidelity settings to study trust in autonomous tools (e.g., a Tesla). Across
these experimental settings, cadet researchers work with military operators and faculty
members to study HMT in future warfighting scenarios [25]. We describe a subset of
these settings along with examples of studies below (Table 1).

Table 1. Research testbeds described in this paper

Testbed Simulation
technology

Ecological target Example studies

A. Autonomous Flight
Teaming (AFT)

F-35 Flight Sim
(Prepar3d, COTS)

Flying an F-35 with
4 autonomous F-16s

Workload on Trust, SA
in Multitasking in Air
Combat [30]

B. Human Automation
Research in a Tesla
(HART)

Tesla Model X Trust in auto systems
in risky tasks

Trust in Risky
Autopark [31–33]

C. Gaming Research
Laboratory

Games (e.g.,
Overcooked)

AI agent teaming in
interdependent tasks

Teaming with AI vs
Human on Task
Performance [26]

D. Social Robotics
Laboratory

Robot APIs
(Pepper, NAO,
Aibo)

Robotic teammates
using natural
language

Social norms with
robots [34, 35]

3 Human-Machine Teaming Research Settings at USAFA

3.1 Testbed A: Autonomous Flight Teaming (AFT)

As mentioned above, one vision for future flight operations is for autonomous aircraft
to seamlessly integrate with human F-35 pilots [8]. To explore factors and evaluate
designs to facilitate this integration, we adapted a flight simulator to allow human pilots
to fly with virtual autonomous F-16s (Fig. 1). The AFT consists of three features that
must work together to provide an environment for human participants to operate their
simulated aircraft in a teamof autonomous systems:Hardware/software, flight scenarios,
and measurement systems.
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Fig. 1. AFT displays and controls

3.1.1 Hardware and Software for Visualization and Control

As shown in Fig. 1, the AFT was designed as a high-fidelity simulator to mimic future
autonomous flight teaming. Participants fly in the simulator using the F-35 Hand on
Throttle and Stick (HOTAS), which is similar to the stick and throttle used in the actual
F-35 Lightning II. The displays found in F-35 simulators used in USAF training are
overlaid with new interfaces and models designed by cadets with input from subject
matter experts (SMEs) and faculty at USAFA.

The flight simulator integrates three, 72-in. monitors into the testing environment
with an additional visual display for prototyping an F-35 pilot’s dashboard display.
The integration of the four monitors into the testing environment, each with their own
information stream, allows for more robust cognitive fidelity in the experiment that
reflects the heavy workload and strained SA of actual pilots. A VR system can also be
integrated into the AFT to further immerse the participant in the scenario or to study
Wizard of Oz (WoZ) teaming scenarios.

Other artifacts are also integrated on a case-by-case basis. For example, pilots in
live flight are continually checking their kneeboard and monitoring the gauges, radar
screens, and the Heads-Up Display (HUD). The SMEs helped develop a “cheat sheet”
that is used to mimic a pilot’s kneeboard. This kneeboard includes the names of the
targets at each SAM site, how to make a radio call, the call-signs of the autonomous
F-16s, and the scenario-dependent flight parameters.

3.1.2 Scenario Development

Like gaming systems, our scenario development focused on blending the narrative,
graphical elements, and physics of the simulation to create an immersive experience for
participants. Our goal is in these scenarios is to replicate future operations in autonomous
flight to a level where participants are highly engaged and motivated to succeed with
their virtual autonomous F-16s. The general sequence is outlined here:

1. After pre-brief, take off from airfield and identify the SAM sites
2. Conduct an orientation flight to learn basic flight skills
3. Determine how to destroy SAM sites: self and/or autonomous F-16s
4. Neutralize targets and be on lookout for other threats
5. Have F-16s form up on F-35 to complete mission
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The pre-mission brief establishes the importance of the mission and how participants
can do well. Most of our studies do not offer real incentives for performing well in our
scenarios. However, we attempt to increase motivation through artificial incentives (e.g.,
“to succeed in this mission, all surface-to-air missiles must be destroyed without any
losses to your flight team”). We rely on cadets’ competitiveness in these activities to
study ways they trust their autonomous wingmen.

Following the pre-brief, participants fly in three different scenarios; first, a famil-
iarization scenario, followed by two operational scenarios. The familiarization scenario
introduces the participant to the information streams of the four screens and guides them
through using each of the flight controls. The participants also practice making radio
calls and learn how to engage their autonomous F-16s based on the goals of the study. For
example, one study assessed three different ways to communicate with the autonomous
wingmen using supervisory control methods and a “play calling” technique [10].

With input from SMEs (i.e., experienced Air Force pilots), we have developed a
range of scenarios at different levels of difficulty and workload in order to assess dif-
ferent ways participants trust, communicate, and team with autonomous wingmen. One
scenario requires participants to attack enemy sites that each contain many surface-to-air
missiles (SAMs). The participant leads all three of the autonomous F-16s in this mission.
The participant can engage each of the targets individually (and likely fail) or rely on the
autonomous wingmen to assist. New displays (e.g., Fig. 2) and methods to communicate
(e.g., voice versus supervisory control on a gaming controller). Workload and difficulty
levels are increased systematically by introducing air threats and/or increasing radio traf-
fic. When air threats are introduced, participants must multitask with their autonomous
wingmen to neutralize the air threat in addition to targeting ground threats with a limited
number of missiles.

Fig. 2. Visual display that shows statuses of F-16s.

3.1.3 Measurement

Wehave examined questions involvingworkload, trust, and performance in teamingwith
autonomous systems via passive means using physiological sensors, telemetric perfor-
mance measures, and experimenter/SME observations (Table 2). To avoid disrupting
the scenario and influencing the immersive experience, the scenarios are not interrupted
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for measurements. The Tobii Pro Glasses system is worn like any other pair of glasses,
and collects data on eye fixation, saccade patterns, and pupil dilation. This eye-tracking
system provides the research team with clear behavioral metrics of the participant’s
attention, which research suggests can be linked to trust [9].

Additionally, overall team performance is assessed based on mission success (e.g.,
number of enemy targets destroyed, number of hits received, etc.). The built-in telemetry
system allows for real-time recording of flight data (e.g., missiles fired, successful hits,
location of wingmen, etc.), which augments behavioral observations and allows for
quantifiable performance metrics (including their adherence to the flight parameters and
time on target) to be analyzed post-experiment. Depending on the study, other measures
can be collected (Table 2).

Table 2. Examples of data collected in the AFT.

Type Construct Metric

Behavioral Performance, Attention Telemetry, Eye-Tracking

Physiological Cognitive Workload, Stress EEG, ECG & GSR

Subjective Workload, SA, Trust/Self-Confidence TLX, SART, Post-Q

Observed Performance Mission Success Rate (# of Targets
Destroyed)

3.1.4 Testbed Validation

Validation of the AFT has been conducted in proof-of-concept studies [30]. In a recent
unpublished study, eight cadets engaged in risky behaviors because of the lack of real-
world consequences. They relied less on their teammates and more on themselves and
explicitly acknowledged flying too low or too high, aggressively going after SAMs, and
performing advanced maneuvers during the mission that were not necessary. Thus, even
though our simulation was higher in physical fidelity than other laboratory-based multi-
tasking tasks (e.g., MAT-B), participants still recognized it was an artificial environment
and their behaviors were reported as unrealistic.

The risky behaviors were minimized in follow-on (also unpublished) studies using
higher-fidelity scenarios. Adding tasks such as keeping an altitude, not exceeding air-
speed levels, and neutralizing air threats reduced the frequency of observed risky behav-
iors. Our current study (on hold due to COVID-19) is evaluating trust and performance
as a function of workload and experience level. Across scenarios and experience levels,
we are seeing variance in reliance on the autonomous wingmen and overall perfor-
mance. Our measures are sensitive to the changing dynamics of the scenario and trust
levels. For example, at the individual level, EEG has been captured and correlated to
task load and trust levels (Fig. 3). All measures are time-synchronized and correlated
for a more complete understanding of stress, workload, and SA. Even though there are
no real consequences for mission failure, our goal of creating an environment to study
future teaming concepts, trust, SA, and other phenomena in USAF tasks has provided
an important look into HMT beyond more basic laboratory tasks.

3.2 Testbed B: Human Automation Research in a Tesla (HART)
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Fig. 3. Alpha and theta waves recorded from a participant during takeoff and initial task
allocations with autonomous wingmen.

Fig. 4. The Tesla Model X - Air Force Version

Given the lack of real consequences
in testbeds such as AFT, the HART
testbed has allowed us to evaluate
trust in real-world and potentially
risky environments.While driving is
obviously a different task than fly-
ing, there are similarities in trusting
autonomous systems in both envi-
ronments. The goal for HMTs is to
engender calibrated trust where the
expected performance of automa-
tion matches the actual performance
of automation [36, 37]. Research has shown that humans may have a propensity to
over-trust robots in realistic emergency scenarios [38]. This over-trust could lead an
individual to underestimate the risk associated with using an intelligent agent or even
foster misplaced reliance on technological teammates [39]. While there has been recent
work attempting to develop an “adaptive trust calibration” system, which would help
with issues of over-trust and under-trust [40], such a system has not been used and tested
on a variety of technological agents in high risk environments with a focus on high
physical and cognitive fidelity.

To address the need for assessing trust calibration in high risk environments,
the WERC has established a mobile research laboratory known as HART (Human-
Automation Research in a Tesla) mobile lab. This mobile lab environment is set up
in a 2017 Tesla Model X (Fig. 4), equipped with various automated features which
include lane-following, adaptive cruise control (ACC), and automated parking. Within
the HART mobile lab are five distinct pieces of technology for data recording that do
not impede the participant’s experience, therefore maintaining psychological fidelity
during the task. Unifying all this technology is its mobility, which allows researchers to
collect a multitude of data in the most ecologically valid way in a dynamic, naturalistic
environment. Like the AFT, we can collect data throughout the study on eye fixations
via eye-tracking, stress fluctuations via GSR, and heart rate readings via ECG with
the use of the Tobii Pro Glasses system and NeuroTechnology’s BioRadio. The third
piece of technology used in the HART is the Advanced Brain Monitoring B-Alert X24
Mobile electroencephalography (EEG). This EEG will allow us to measure workload
and attention [41]. Additionally, cameras mounted inside the car will capture the interior
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and exterior environment but also the participant’s face to analyze their emotional and
cognitive states based on Ekman and Friesen [42] action unit measurements of facial
muscle movement. The final piece of technology being used is a RaceCapture telemetry
system, which will allow for the real-time recording of vehicle data (i.e. acceleration,
braking, and steering).

3.2.1 Testbed Validation

We have conducted a series of studies to examine how trust in real autonomous sys-
tems develops [31–33]. An initial study evaluated driver intervention behaviors dur-
ing an autonomous parking task (Fig. 5). While recent research has explored the use
of autonomous features in self-driving cars, none has focused on autonomous parking.
Recent incidents and research have demonstrated that drivers sometimes use autonomous
features in unexpected and harmful ways.

Fig. 5. The three distinct stages of the Tesla’s autoparking feature. The Tesla is represented by the
solid blue rectangles with the “T” on them. Time is represented by those rectangles transitioning
from a lighter to a darker shade of blue. The trash cans are represented by the hexagons. (Color
figure online)

Participants completed a series of autonomous parking trials with a Tesla Model
X and their behavioral interventions were recorded. Participants also completed a risk-
taking behavior test and a post-experiment questionnaire which contained, amongst
other measures, questions about trust in the system, likelihood of using the autopark
feature, and preference for either the autonomous parking feature or self-parking. Initial
intervention rates were over 50%, but declined steeply in later trials (Fig. 6). Responses
to open-ended questions revealed that once participants understood what the system
was doing, they were much more likely to trust it. Trust in the autonomous parking
feature was predicted by a model including risk-taking behaviors, self-confidence, self-
reported number of errors committed by the Tesla and the proportion of trials in which
the driver intervened. Using autonomy with little knowledge of its workings can lead
to high degree of initial distrust and disuse. Repeated exposure of autonomous features
to drivers can greatly increase their use. Simple tutorials and brief explanations of the
workings of autonomous features may greatly improve trust in the system when drivers
are first introduced to autonomous systems.
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Fig. 6. Percentage of trials for which the
autoparking was engaged, where the car
was able to successfully and fully park
itself, and where the driver intervened, split
by first and last park, as well as condition.

In a follow-on study, we compared driver
intervention rates when either showing the
autoparking capabilities to drivers or merely
telling them about the features without
demonstration. The study showed that the
intervention rates when showing the park-
ing features drops significantly compared
to when drivers are merely told about the
autopark capabilities.

3.3 Testbed C: Gaming Research
Laboratory at USAFA

3.3.1 AI Teaming Research

One issue that has emerged in HMT research
is that human team players communicate less

overall with autonomous teammates, which can affect team performance [43, 44]. This
may be part of the reason that few AI agents exist that work with humans in a real-
world team setting with the ability to communicate with human team members. There
is thus a need to evaluate human communication styles with autonomous agents in team
environments.

3.3.2 Gaming as a Reasonable and Fun Way to Approximate Teamwork

To study human-AI communication, we have established a video game laboratory to
leverage the immersive experiences games afford to many people. Within this game
laboratory, we developed a testbed called Cooking with Humans and Autonomy in
Overcooked! 2 for studying Performance and Teaming (CHAOPT) [26]. Overcooked
2 is particularly immersive. The game requires coordinated teamwork and good com-
munication to be successful (e.g., earn more points, advance to higher levels, etc.). The
game uniquely, cleverly and dynamically manipulates the environment which forces
flexible allocation of roles and information sharing (Fig. 7). We have added Wizard of
Oz capabilities to observe how human behavior changes when a person believes they
are working with an AI agent. This WoZ capability has been valuable because we can
examine how humans react differently based on their teammate, with an emphasis on
how they communicate, how they evaluate their teammate, and how much they trust
their teammates.

3.3.3 Overcooked 2 Game Mechanics

Overcooked 2 is a video game that is teamwork intensive and requires communication
to succeed at a high level. Players are given food orders to complete and are required to
navigate the kitchen environment, prepare the orders, and deal with distracting features.
Once orders are submitted, players are awarded points and tips based on the order
correctness and priority. If orders are not fulfilled in time, that order goes away and
players lose points and bonuses. Points, bonuses, completion time, and other game-
based scores provide handy performance measures for studies. Players have tasks to
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Fig. 7. Two cadets playing the Overcooked 2 video game in the Gaming Research Lab along with
the game display to show how in-game tasks map to higher-level teaming concepts.

perform such as: collect the required order ingredients, chop food, clean dishes, and
cook food to complete orders.

Overcooked stimulates communication through various tasks and levels of difficulty.
Different worlds and levels introduce environments where a single player cannot com-
plete the level on their own, which is where the communication aspect of this game is
extremely vital. The beginning levels do not require asmuch communication as the player
is still being introduced to new game concepts, but around World 2 Level 1, communi-
cation becomes more important to the team’s success. The kitchen maps become restric-
tive and the supply locations become limited to all players. Communication becomes
required to fulfill orders and complete the level. The methods of communication that are
being measured in this pilot test are push versus pull communication and the amount of
communication used. All communication is verbal for this experiment. Push communi-
cation refers to one player telling the other player what they want or need. For example,
one player that needs cheese to complete an order may tell the other player, “Chop
me cheese” or “Throw me cheese”. Pull communication refers to one player asking for
another player to complete a task. For example, the player may say “Can you throw me
cheese?” or “Can you chop cheese for this order?” The communication method may
indicate the level of trust the participant has in the human or autonomous agent or which
confederate they would prefer to play with.

3.4 Testbed D: Social Robotics Laboratory

In future battlefields, someAI systemswill likely be embodied in physical robots and not
simply exist in virtual environments. Thus, human-robot interaction (HRI) environments
must be developed to explore their coordination with humans. Like above, we have
developed a testbed to mimic future environments to explore robots in authority, teaming
alongside humans, as a moral advisor, and a teammate in a stressful set of tasks.

3.4.1 Warrior-Robot Relations

Using a commercially-available Pepper robot, we created a task to explore empathy
towards robots inahuman-robot teamtaskunderstress. In the transitionof robotsandother
artificial agents from tools to teammates [45], important questions are raised by form-
ing teammate like relationships with non-human agents, especially in battlefield envi-
ronments. For instance, in military contexts, there have been powerful stories of military
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members disusing robots as a result of feeling too much empathy towards them. In 2007,
an Army Colonel deeply empathized with an improvised explosive device (IED) detect-
ing robot.Therobotwasdesigned touse itsmanyarticulating legs topurposefullydetonate
IEDs, and as a result sacrifice itself in the detonation process. The ArmyColonel stopped
an exercise demonstrating the robot sacrificing itself to detonate the IEDs, stating that it
wouldbe inhumane tocontinue theexercise [46].Such inappropriate attributionsof empa-
thy towards robots and other artificial agents could prevent humans frommaking full use
of the benefits of autonomous systems deployed in dangerous environments. If a human
feels toomuchempathy, theymaysacrificeelementsof themissionor task toprevent harm
to an autonomous teammate, which could jeopardize the mission or the team.

However, the ability to form empathetic bonds towards others is a major point of
emphasis for the training ofU.S.military officers especially regarding facilitating respect
for the human dignity of others. Empathy may be needed to truly think of and rely upon
artificial agents that are specifically designed to be teammates for humans. If a human
does not feel enough empathy, the operator may not fully utilize the agent as a teammate
or use it in a manner that is unintended or unsustainable. Thus, a balance between too
little and too much empathy towards a robot will likely be needed to facilitate good
teaming between humans and robots in military contexts. Initial evidence supporting
the need for such a balance was provided by a set of studies, using the TEAMMATE
simulation, that examined empathy for a robot in the context of a space mining mission
[47, 48]. The studies demonstrated that human teammates responded more often and
more quickly to a robot request for help when it was portrayed as a helpful teammate
companion and when it appeared more damaged.

Additionally, military teams are normally required to operate under high levels of
stress and stress is a common way comradery is built between members of the team.
Inducing stress can help make people feel stronger perceived understanding of others’
emotions and feelings [49]. As a result, interacting with a robot teammate under high
stress could cause people to feel more empathetic towards a robot team member than
when interacting under low stress.

To induce empathy and stress in a human-robot team task we conducted a study with
cadets at USAFA. The task was to interact with Pepper, a humanoid robot developed
by Softbank Robotics, as a teammate in an intrinsically incentivized spelling bee game.
Participants were tasked with working with Pepper to spell increasingly difficult English
words taken from the National Adult Spelling Bee Practice vocabulary list [50]. Partic-
ipants were responsible for spelling 2/3 of the words, while Pepper was responsible for
spelling 1/3 of the words. If participants spelled a word incorrectly, the Pepper would
lose 1/8 of its simulated battery health/life. And, Pepper’s simulated battery health and
system performance would continue to degrade as the participant misspelled words until
Pepper ran out of health. Pepper’s speech was also slowed as a result of its diminished
health. However, the participant could stop the study at any time to prevent Pepper from
losing health. Upon doing so, the participant’s spelling score would become final. If Pep-
per’s simulated health was completely diminished, participants were told that Pepper lost
all memory of the participant and was no longer functional.

As the participant interacted with Pepper, their poor spelling performance harmed
Pepper by reducing Pepper’s simulated battery life and health by 1/8. Participants’ will-
ingness to continue was perceived as less empathy shown towards Pepper. If/when the
participant stopped the spelling task to preserve Pepper, it was recorded as an objective
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measure of empathy shown toward the robot. To induce stress, half of the participants
completed the spelling task under time pressure.

Our results suggested an interesting interaction between participant gender and stress
on empathy scores, where males and females showed a differential pattern of empathetic
behavior toward the Pepper robot under different stress conditions [35]. The data trended
such that males were initially more empathetic towards robot partners in unstressed con-
ditions than females but were far more likely to act less empathetic toward robot partners
in stressed conditions. Whereas females were far more likely to act more empathetic
toward robot partners in stressed conditions. This finding could inform changes in the
design of robots intended for stressful scenarios and whenworking in teams with people.
For example, an engineer could design less human-like responses for women operators
andmore human-like responses formale operators based on the stressful dynamics of the
task. However, it is importantwhen designing human-like responses to adhere to intuitive
principles of human-likeness [51] and avoid designs that are perceived as uncanny [52].
This work presents some early findings in understanding the nuanced roles that empathy
and stress play in teaming with robotic and other artificial agents. This understanding
will be important in creating effective human-agent teams for successful deployment in
several Air Force contexts.

3.4.2 Robots as Moral Advisors

Fig. 8. Pepper robot used in the social robotics task

The role of an artificial moral
advisor would be to assist peo-
ple in making decisions that
comply with moral standards
and values [53–58] and per-
haps even serve as a ‘cog-
nitive wingman’ [59]. Previ-
ous research on how people
make moral judgments and
decisions showed that people
in identical moral dilemmas
may arrive at diverging deci-
sions depending on various
psychological factors, such as
gender, time pressure, cogni-
tive load, and language [60–
63]. This inconsistency in peo-
ple’s decisions may become
a critical problem, especially
in contexts where their deci-
sions could bring about sig-
nificant and irrevocable con-
sequences. One such example
would be a military context
such as the Air Force, where
there is a high demand for
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morally-laden decisions [64]. To illustrate, imagine that the following ethical dilemma
takes place in a military operation: An officer faces a decision of whether to sacrifice one
person to save many lives or to take no action and lose many lives. Previous researchers
found that, in this situation, the time it took for people to reach the same utilitarian deci-
sion of sacrificing one life to save many was approximately 5.8 s under no cognitive load
but increased to 6.5 s under cognitive load [61]. This implies that in the military context,
the officer’s decision may cause strikingly different consequences depending on their
cognitive resources available at the time. Given this volatile tendency of people’s moral
decision-making process, it would be useful to develop an artificial intelligence system
that may guide human teammates to follow a systematic and well-informed decision-
making process before reaching a moral decision. However, it is critical that such a
system has a degree of moral competence [59, 65].

As a first step towards building an artificial moral advisor, we have launched an
investigation on how robots can effectively communicate a message that encourages
people to make morally right choices. Recently, it was found that a robot’s responses
to people’s request can result in changes in people’s judgments of whether a certain
behavior is morally permissible or not [66]. If people’s moral judgments could be shaped
by a robot’s response, would people also be receptive to a robot’s unsolicited advice on
what is morally right or wrong choice in human-robot teams? Drawing from Confucian
role-ethics [67], we predict that a piece of moral advice from a robot may influence
people’s behavior to a varying degree depending on how people relate themselves with
the robot. Whereas, in a human-robot team, a human may readily acquire a status of a
partner, teammate, or colleague, a robot may not easily be granted with such a status
[68]. Therefore, we predict that people would be more willing to follow a robot’s moral
advice when they perceive the robot as their teammate compared to when they do not
perceive the robot as their teammate.

To test this idea, we will program commercial-off-the-shelf (COTS) robots, like
pepper (Fig. 8), to interact with human participants. These participants are asked to
do a tedious task that will ultimately benefit their team performance, but can stop at
any time. In this situation, a moral behavior would be to complete the task. Whenever
participants express their intention to stop continuing the task, a robot gives them a
response that emphasizes the importance of being a good teammate. We predict that
the effect of highlighting the importance of being a good teammate would have a more
positive effect on the likelihood of participants’ completing the task when they perceived
the robot as their teammate compared to when they do not.

Our proposal to seek assistance from an artificial intelligence system in making
moral decisions may raise many ethical concerns. Decisions about ethical dilemmas
where no absolute answer is available may appear to be outside the purview of any
kind of artificial intelligence systems. Perhaps, the value of an artificial moral advisor in
human-machine teams may be most evident in situations where morally right or wrong
actions are stipulated (e.g., “Do not cheat on tests”). However, even in moral gray areas,
we expect that an artificial moral advisor can be useful at various levels of fidelity. First,
an artificial moral advisor can quickly and accurately gather and convey to humans
information relevant to decisions at hand so that humans can make informed decisions.
Next, humans can verify whether their personal moral norms and values are consistent
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with their team’s or the general public’s by checking in with an artificial moral advisor.
Third, humans can rely on an artificial moral advisor to facilitate clear discussions about
moral choices with other human teammates. Finally, an artificial moral advisor can
optimize persuasive strategies for encouraging humans to adhere to moral norms by
accurately assessing team characteristics.

4 Discussion

There are many ways to define fidelity requirements for simulations used in HMT stud-
ies. Across the testbeds described above, a wide range of established and novel methods
have been used to create presence and appropriate fidelity in research studies. These
environments have elicited behaviors that appear natural and appropriate for the task.
However, the results of these studies are intended to generalize to high stress environ-
ments where real lives are at stake. The primary question is whether we have achieved the
appropriate level of fidelity that allows us to make this generalization. In applied stud-
ies when technologies are being tested, designing appropriate levels of fidelity to elicit
stress and interaction become even more important. For example: How can researchers
stimulate the same levels of stress as when a real air threat is detected in an F-35? We
discuss these and other considerations in the next sections.

4.1 The Need for Appropriate Fidelity in Military Training and Research

The highest level of fidelity a researcher can have is to conduct research in actual oper-
ational and naturalistic environments. The use of systems in naturalistic environments
can provide helpful data to inform lab-based studies. For example, effectiveness of early
human-robot teamwork was demonstrated by operational robot deployment in the 9/11
World Trade Center attack and Fukushima Daiichi disasters [69]. Others have demon-
strated the utility of interviewing pilots to discover how they learn their systems in situ.
This information can be used in the design and develop automated systems such as the
Auto-GCAS [2, 70].

However, conducting research in naturalistic settings poses its own set of challenges.
Operational personnel are not always available for research, the occurrence of disasters
cannot be predicted in advance, and naturalistic settings and conditions cannot usually
not be fully controlled. This reality necessities the use of simulations. By developing
high fidelity simulations in military contexts, the gap between developers and users
can be bridged prior to production or fielding of new technology. For human-autonomy
teaming research there are several unique considerations of fidelity requirements in the
creation of such testbeds.

4.1.1 Simulating Stress, Risk and Urgency to Study Trust in HMT

The first consideration is the accurate simulation of stress, risk, and urgency. Military
members rely on basic and advanced technologies in warfare. Establishing artificial time
limits, promoting competition, andusing theWoZ techniquesmaynot be enough to create
an appropriate sense of urgency. Additionally, IRB regulations require researchers to not
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put participants at more risk than they are exposed to daily. Researchers have addressed
this issue by creating more realistic but still controllable environments. For example,
trust in a robot was studied in a building simulated to be on fire with real alarms and
simulated smoke [38, 39]. Our studies have used an actual Tesla vehicle with a realistic
parking situation [31–33]. All these studies have seemed to elicit genuine behavior
from participants making it more likely that constructs such as trust are evaluated more
appropriately. However, it is unclear how these approximations differ from real life-or-
death domains such as in medicine, aviation, and military operations. It is also unclear
how different humans behave in these environments compared to laboratory studies.
Further research into HMT fidelity requirements should compare different levels of
fidelity to answer this question.

4.1.2 Using Wizard of Oz to Simulate Future HMT Capabilities

Onedifficult challenge inHMTresearch is the ability to simulate futureHMTcapabilities
such as a fully autonomous agent that can communicate, coordinate andwork seamlessly
in anHMT.Currently, such an agent does not exist. Therefore, theWoZmethod is a useful
method to approximate this future capability. Participants usually participate inHRI/HCI
studies tabula rasa and believe they are interacting with technology and not a human.
Thus, we have found WoZ [28] to be a high-fidelity method to uncover differences in
how participants interact with technologies versus humans. Suchmethods are used in the
HRI field to uncover important psychological and human performance issues that might
arise assuming the technology is realized. An alternative to this method is the “Oz-of-
Wizard” in which the human behavior is simulated or assumed to test how a robot will
respond [29]. Eventually, WoZ may become less important in research if autonomous
agents become more readily available and configurable. For example, recent work in
our laboratory has investigated bonding and trust with Sony’s Aibo, a robotic dog that
demonstrates a variety of autonomous dog-like behaviors [71, 72].

4.2 The Trade-off Space for Fidelity Requirements

Fidelity is multi-faceted and certain tradeoffs should be made while maintaining the
integrity of the training exercise, task assessment, or research study, depending on the
core reason for using a simulation environment.

The goals an organization has for using a simulator (whether it be as a testbed for
training, assessment, or a means of studying trust and teamwork) determine the fidelity
requirements for that simulation environment. Therefore, a crucial step in implementing
simulation practices is clearly identifying the needs or research focus of that initiative.
For example, to get the most realistic results for measuring risk taking and trust in
automated tasks, we were able to use the HART. Meanwhile, to understand how pilots
may behave with systems that have autonomous capabilities which do not yet exist,
in scenarios that are impossible to test in a naturalistic environment, we use the AFT,
prioritizing physical and conceptual fidelity over psychological fidelity. Whereas, when
testing teamwork and moral decision making, we value cognitive or conceptual fidelity
above physical fidelity.
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In summary, a brief guideline to assist in selecting the appropriate level of fidelity
might be as follows:

1) Clearly identify the research objective for use of simulation
2) Based on the identified research objective, appropriately prioritize level and type of

fidelity to accomplish stated goal
3) Both the user and producer should be involved in development process
4) High fidelity does not necessarily mean greater training performance benefits
5) WoZ and other techniques can maintain fidelity while increasing the breadth and

depth of HMT testing scenarios, especially for capabilities which are still in
development

6) Trust and workload are two important measurements in understanding how HMT
can most effectively be implemented in different contexts.

5 Conclusion

We have demonstrated through a variety of testbeds the utility of presenting varying
levels of appropriate levels of fidelity in human-machine teaming research. Technology
available today will change rapidly and levels of fidelity will likely improve accordingly.
It will therefore remain a constant challenge to balance the goals of the research with
the available technologies to accurately assess human-machine teaming performance
for future operations. This paper is a first step to outlining an approach to assessment of
appropriate levels of fidelity in human-machine teaming research.
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